现在时间是:
当前位置:首 页 >> 数值分析(英)>> 教学区>> 文章列表

17074221 黄剑锋 作业七

作者:17074221   发布时间:2019-05-26 22:00:26   浏览次数:113

3.4

1.Decide whether the equations form a cubic spline.

(b)

S1(x) =2x^3 + x^2 + 4x + 5 on [0,1]

S2(x) =(x 1)3 + 7(x 1)2 + 12(x 1) + 12      on [1,2]

SolYES

satises all cubic spline properties for the data points (0, 1),

(1, 2)




7.Solve equations (3.24) to nd the natural cubic spline through the three points (a) (0,0),(1,1), (2,4) (b) (1,1), (1,1), (2,4).

solution:

a)c1=0;c2=2/3;c3=0

b1=1/2;b2=2;

d1=1/2;d2=-1/2;

S1(x)=(1/2)x+(1/2)x^3

S2(x)=1+2(x-1)+(3/2)*(x-1)^2-(1/2)*(x-1)^3

b)c1=0;c2=2/3;c3=0

b1=-1;b2=2;

d1=1/4;d2=-1/2;

S1(x)=1-(x+1)+(1/4)*(x+1)^3

S2(x)=1+2(x-1)+(3/2)*(x-1)^2-(1/2)*(x-1)^3



computer problems:

1.Find the equations and plot the natural cubic spline that interpolates the data points (a) (0,3),(1, 5),(2, 4),(3, 1) (b) (1, 3),(0, 5),(3, 1),(4, 1),(5, 1).

%Program 3.5 Calculation of spline coefficients

%Calculates coefficients of cubic spline

%Input: x,y vectors of data points

%     plus two optional extra data v1, vn

%Output: matrix of coefficients b1,c1,d1;b2,c2,d2;...

function coeff=splinecoeff(x,y)

n=length(x);v1=0;vn=0;

A=zeros(n,n); % matrix A is nxn

r=zeros(n,1);

for i=1:n-1    % define the deltas

   dx(i)= x(i+1)-x(i); dy(i)=y(i+1)-y(i);

end

for i=2:n-1    % load the A matrix

A(i,i-1:i+1)=[dx(i-1) 2*(dx(i-1)+dx(i)) dx(i)];

r(i)=3*(dy(i)/dx(i)-dy(i-1)/dx(i-1)); % right-hand side

end

% Set endpoint conditions

% Use only one of following 5 pairs:

A(1,1) = 1;     % natural spline conditions

A(n,n) = 1;

%A(1,1)=2;r(1)=v1; % curvature-adj conditions

%A(n,n)=2;r(n)=vn;

%A(1,1:2)=[2*dx(1) dx(1)];r(1)=3*(dy(1)/dx(1)-v1);    %clamped

%A(n,n-1:n)=[dx(n-1) 2*dx(n-1)];r(n)=3*(vn-dy(n-1)/dx(n-1));

%A(1,1:2)=[1 -1];   % parabol-term conditions, for n>=3

%A(n,n-1:n)=[1 -1];

%A(1,1:3)=[dx(2) -(dx(1)+dx(2)) dx(1)]; % not-a-knot, for n>=4

%A(n,n-2:n)=[dx(n-1) -(dx(n-2)+dx(n-1)) dx(n-2)];

coeff=zeros(n,3);

coeff(:,2)=Ar; % solve for c coefficients

for i=1:n-1    % solve for b and d

coeff(i,3)=(coeff(i+1,2)-coeff(i,2))/(3*dx(i));

coeff(i,1)=dy(i)/dx(i)-dx(i)*(2*coeff(i,2)+coeff(i+1,2))/3;

end

coeff=coeff(1:n-1,1:3);

function [x1,y1]=splineplot(x,y,k)

n=length(x);

coeff=splinecoeff(x,y);

x1=[]; y1=[];

for i=1:n-1

xs=linspace(x(i),x(i+1),k+1);

dx=xs-x(i);

ys=coeff(i,3)*dx; % evaluate using nested multiplication

ys=(ys+coeff(i,2)).*dx;

ys=(ys+coeff(i,1)).*dx+y(i);

x1=[x1; xs(1:k)']; y1=[y1;ys(1:k)'];

end

x1=[x1; x(end)];y1=[y1;y(end)];

plot(x,y,'o',x1,y1)



4.2

Fit data to the periodic model

y = F3(t) = c1 + c2 cos 2πt + c3 sin 2πt.

Find the 2-norm error and the RMSE.

a)t:0 1/4 1/2 3/4 y:1 3 2 0

b)t:0 1/4 1/2 3/4 y:1 3 2 1

c)t:0 1/2   1   3/2 y:3 1 3 2

solution:

a)A=[1 1 0;1 0 1;1 -1 0;1 0 -1];b=[1;3;2;0]

C=[3/2;-1/2;3/2]

y=3/2-1/2 cos 2πt + 3/2sin 2πt.

r=[0;0;0;0]

||r||2=0 ;RMSE=0;

b)A=[1 1 0;1 0 1;1 -1 0;1 0 -1];b=[1;3;2;1]

C=[7/4;-1/2;3/2]

y=7/4-1/2 cos 2πt + 3/2sin 2πt.

r=[-1/4;1/4;1/4;1/4]

||r||2=1/2 ;RMSE=1/4;

c):A=[1 1 0;1 -1 0 ;1  1 0;1 -1 0];b=[3;1;3;2]

C=[9/4;3/4;3]

y=9/4-3/4 cos 2πt + 3sin 2πt.

r=[0;1/2;0;1/2]

||r||2=sqrt1/2 ;RMSE=sqrt(1/8);

3.Fit data to the exponential model by using linearization.

Find the 2-norm of the difference between the data points yi

and the best model c1*e^c2ti .

a)t:-2 0 1 2 y:1 2 2 5

b)t:0 1 1 2 y:1 1 2 4

(a) y = 1.932e0.3615t, ||e||2 = 1.2825,

(b) y = 2t 1/4, ||e||2 = 0.9982

computer programs

1.Fit the monthly data for Japan 2003 oil consumption, shown in the following table, with the periodic model (4.9), and calculate the RMSE:

function [c,RMSE]=lsquares(A,y)

a=A'*A;

b=A'*y;

c=gaussian(a,b);

r=y-A*c';

sum=0;

for i=1:length(r)

   sum=sum+r(i)^2;

end

RMSE=sqrt(sum/length(r));

function x=gaussian(a,b)

n=length(b);

for j=1:n-1

  if abs(a(j,j))<eps;error('zero pivot encountered');end

  for i=j+1:n

      mult=a(i,j)/a(j,j);

      for k=j+1:n

          a(i,k)=a(i,k)-mult*a(j,k);

      end

      b(i)=b(i)-mult*b(j);

  end

end

for i=n:-1:1

for j=i+1:n

   b(i)=b(i)-a(i,j)*x(j);

end

x(i)=b(i)/a(i,i);

end

1.Consider the world population data of Computer Problem 3.1.1. Find the best exponential t of the data points by using linearization. Estimate the 1980 population, and nd the estimation error.








上一篇:没有了    下一篇:没有了

Copyright ©2020    计算数学达人 All Right Reserved.

技术支持:自助建站 | 领地网站建设 |短信接口 |燕窝 版权所有 © 2005-2020 lingw.net.粤ICP备16125321号 -5